Skip navigation
  • DSpace logo
  • Home
  • Collections
  • Research Outputs
  • Author profiles
  • Departments & Affiliations
  • Explore by
    • Research Outputs
    • Author profiles
    • Departments & Affiliations
  • Login or register:
    • My NSLHD
    • Receive email
      updates
    • Edit Account details

  1. NSLHD Research
  2. Research
  3. Research Publications
Please use this identifier to cite or link to this item: https://nslhd.intersearch.com.au/nslhdjspui/handle/1/38026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSutherland, Kateen
dc.contributor.authorAlmeida, Fernanda R.en
dc.contributor.authorKim, Taiyunen
dc.contributor.authorBrown, Elizabeth C.en
dc.contributor.authorKnapman, Fionaen
dc.contributor.authorNgiam, Joachimen
dc.contributor.authorYang, Jeanen
dc.contributor.authorBilston, Lynne E.en
dc.contributor.authorCistulli, Peter A.en
dc.date.accessioned2022-05-13T21:35:23Z-
dc.date.available2022-05-13T21:35:23Z-
dc.date.issued2021-09-
dc.identifier.citation17(9):1785-1792en
dc.identifier.otherRIS-
dc.identifier.urihttps://nslhd.intersearch.com.au/nslhdjspui/handle/1/38026-
dc.description.abstractStudy Objectives: Oral appliance(OA) therapy usage can be objectively measured through temperature-sensing data chips embeddedin the appliance. Initial reports of group data for short-term treatment usage suggest good nightly hours of usage. However, individual variability in treatment usage patterns has not been assessed. We aimed to identify OA treatment usage subtypes in the first 60 days and the earliest predictors of these usage patterns. Method(s): OSA patients were recruited for a study of OAtherapy with an embedded compliance chip (Denti Trac, Braebon, Canada).Fifty-eight participants with60days of download able treatment usage data (5-minute readings)were analyzed. Ahierarchical cluster analysis was used to group participants with similar usage patterns. A random forest classification model was used to identify the minimum number of days to predict usage subtype. Result(s): Three user groups were identified and named:"Consistent Users" (48.3%), "Inconsistent Users," (32.8%)and"Non-Users" (19.0%).Thefirst20daysprovided optimal data to predict the treatment usage group a patient would belong to at60days(90%accuracy). The strongest predictors of user group were download edusage data, average wear time, and number of days missed. Conclusion(s): Granular analysis of OA usage data suggests the existence of treatment user subtypes(Consistent, Inconsistent, and Non-Users). Our data suggest that 60-day usage patterns can be identified in the first 20 days of treatment using downloaded treatment usage data. Understanding initial treatment usage patterns provide an opportunity for early intervention to improve long-term usage and outcomes.Copyright © 2021 American Academy of Sleep Medicine. All rights reserved.<br />en
dc.language.isoenen
dc.relation.ispartofJournal of Clinical Sleep Medicineen
dc.titleTreatment usage patterns of oral appliances for obstructive sleep apnea over the first 60 days: A cluster analysisen
dc.typeArticleen
dc.identifier.affiliationRoyal North Shore Hospitalen
dc.identifier.doihttp://dx.doi.org/10.5664/jcsm.9288-
dc.description.pages1785-1792en
dc.relation.urlhttps://jcsm.aasm.org/doi/10.5664/jcsm.9288en
dc.subject.keywordssomnolenceen
dc.subject.keywordstreatment responseen
dc.subject.keywordsmedication adherence monitoring systemen
dc.subject.keywords*sleep apnea applianceen
dc.subject.keywordsDentiTracen
dc.subject.keywordsadultapnea hypopnea indexen
dc.subject.keywordsarticleen
dc.subject.keywordsbody massen
dc.subject.keywordscluster analysisen
dc.subject.keywordscontinuous positive airway pressureen
dc.subject.keywordscontrolled studyen
dc.subject.keywordsdevice removalen
dc.subject.keywordsdisease severityen
dc.subject.keywordsEpworth sleepiness scaleen
dc.subject.keywordsFemaleen
dc.subject.keywordshierarchical clusteringen
dc.subject.keywordsHumansen
dc.subject.keywordsmajor clinical studyen
dc.subject.keywordsMaleen
dc.subject.keywordsmiddle ageden
dc.subject.keywordsobesityen
dc.subject.keywordspatient complianceen
dc.subject.keywordspolysomnographyen
dc.subject.keywordsrandom foresten
dc.subject.keywordssecondary analysisen
dc.subject.keywordsself reporten
dc.subject.keywordssensitivity and specificityen
dc.subject.keywords*sleep disordered breathing/th [Therapy]en
dc.subject.ahtSleep aponeaen
local.editedby.nameBC 220822en
dc.relation.departmentRespiratory and Sleep Medicineen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptRespiratory and Sleep Medicine-
crisitem.author.deptRoyal North Shore Hospital-
crisitem.author.deptRespiratory and Sleep Medicine-
crisitem.author.deptRespiratory and Sleep Medicine-
crisitem.author.deptRoyal North Shore Hospital-
Appears in Collections:Research Publications
Show simple item record

Page view(s)

26
checked on Jun 11, 2025
Find this article in Springboard

Google ScholarTM

Check

Altmetric


Items in NSLHD are protected by copyright, with all rights reserved, unless otherwise indicated.

Northern Sydney Local Health District   |   Northern Sydney Local Health District Libraries  |   NSLHD Springboard   |   Contact the Library